Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 70(6): 3639-3646, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32501783

RESUMO

A Gram-stain-negative, microaerophilic, non-motile, rod-shaped bacterium strain designated PMP191FT, was isolated from a human peritoneal tumour. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the organism formed a lineage within the family Chitinophagaceae that was distinct from members of the genus Pseudoflavitalea (95.1-95.2 % sequence similarity) and Pseudobacter ginsenosidimutans (94.4 % sequence similarity). The average nucleotide identity values between strain PMP191FT and Pseudoflavitalea rhizosphaerae T16R-265T and Pseudobacter ginsenosidimutans Gsoil 221T was 68.9 and 62.3% respectively. The only respiratory quinone of strain PMP191FT was MK-7 and the major fatty acids were iso-C15 : 0, iso-C15 : 1 G and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The polar lipids consisted of phosphatidylethanolamine and some unidentified amino and glycolipids. The G+C content of strain PMP191FT calculated from the genome sequence was 43.4 mol%. Based on phylogenetic, phenotypic and chemotaxonomic evidence, strain PMP191FT represents a novel species and genus for which the name Parapseudoflavitalea muciniphila gen. nov., sp. nov. is proposed. The type strain is PMP191FT (=DSM 104999T=ATCC BAA-2857T = CCUG 72691T). The phylogenetic analyses also revealed that Pseudobacter ginsenosidimutans shared over 98 % sequence similarly to members of the genus Pseudoflavitalea. However, the average nucleotide identity value between Pseudoflavitalea rhizosphaerae T16R-265T, the type species of the genus and Pseudobacter ginsenosidimutans Gsoil 221T was 86.8 %. Therefore, we also propose that Pseudobacter ginsenosidimutans be reclassified as Pseudoflavitalea ginsenosidimutans comb. nov.


Assuntos
Bacteroidetes/classificação , Neoplasias Peritoneais/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Bacteroidetes/isolamento & purificação , Baltimore , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Humanos , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
2.
Tissue Eng Part A ; 24(1-2): 157-185, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28457188

RESUMO

The influence of somatic stem cells in the stimulation of mammalian cardiac muscle regeneration is still in its early stages, and so far, it has been difficult to determine the efficacy of the procedures that have been employed. The outstanding question remains whether stem cells derived from the bone marrow or some other location within or outside of the heart can populate a region of myocardial damage and transform into tissue-specific differentiated progenies, and also exhibit functional synchronization. Consequently, this necessitates the development of an appropriate in vitro three-dimensional (3D) model of cardiomyogenesis and prompts the development of a 3D cardiac muscle construct for tissue engineering purposes, especially using the somatic stem cell, human mesenchymal stem cells (hMSCs). To this end, we have created an in vitro 3D functional prevascularized cardiac muscle construct using embryonic cardiac myocytes (eCMs) and hMSCs. First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were cocultured onto a 3D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions; hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed dense vascular networks. Next, the eCMs and hMSCs were cocultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were characterized at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated progenies revealed neo-cardiomyogenesis and neo-vasculogenesis. In this milieu, for instance, not only were hMSCs able to couple electromechanically with developing eCMs but were also able to contribute to the developing vasculature as mural cells, respectively. Hence, our unique 3D coculture system provides us a reproducible and quintessential in vitro 3D model of cardiomyogenesis and a functioning prevascularized 3D cardiac graft that can be utilized for personalized medicine.


Assuntos
Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Engenharia Tecidual/métodos , Diferenciação Celular/fisiologia , Humanos
3.
Cem Concr Compos ; 81: 109-121, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28785136

RESUMO

A common repair procedures applied to damaged concrete is to fill cracks with an organic polymer. This operation is performed to increase the service life of the concrete by removing a preferential pathway for the ingress of water, chlorides, and other deleterious species. To effectively fulfill its mission of preventing chloride ingress, the polymer must not only fully fill the macro-crack, but must also intrude the damage zone surrounding the crack perimeter. Here, the performance of two commonly employed crack fillers, one epoxy, and one methacrylate, are investigated using a combined experimental and computer modeling approach. Neutron tomography and microbeam X-ray fluorescence spectrometry (µXRF) measurements are employed on pre-cracked and chloride-exposed specimens to quantify the crack filling and chloride ingress limiting abilities, respectively, of the two polymers. A two-dimensional model of chloride transport is derived from a mass balance and solved by the finite element method. Crack images provided by µXRF are used to generate the input microstructure for the simulations. When chloride binding and a time-dependent mortar diffusivity are both included in the computer model, good agreement with the experimental results is obtained. Both crack fillers significantly reduce chloride ingress during the 21 d period of the present experiments; however, the epoxy itself contains approximately 4 % by mass chlorine. Leaching studies were performed assess the epoxy as a source of deleterious ions for initiating corrosion of the steel reinforcement in concrete structures.

4.
Front Cell Dev Biol ; 5: 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28194397

RESUMO

Organ tissue engineering, including cardiovascular tissues, has been an area of intense investigation. The major challenge to these approaches has been the inability to vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide oxygen and nutrients to the cells contained in the biomaterial constructs have had varying degrees of success. The aim of this current study is to develop a three-dimensional (3-D) model of vascularized cardiac tissue to examine the concurrent temporal and spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis during stem cell cardiac regeneration. In order to achieve the above aim, we have developed an in vitro 3-D functional vascularized cardiac muscle construct using human induced pluripotent stem cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and human mesenchymal stem cells (hMSCs). First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were co-cultured onto a 3-D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions. In this milieu, hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed extensive plexuses of vascular networks. Next, the hiPSC-ECMs and hMSCs were co-cultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were analyzed at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated cells revealed neo-angiogenesis and neo-cardiomyogenesis. Thus, our unique 3-D co-culture system provided us the apt in vitro functional vascularized 3-D cardiac patch that can be utilized for cellular cardiomyoplasty.

5.
J Colloid Interface Sci ; 449: 443-51, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25804202

RESUMO

Electrostatic surface heterogeneity on the order of a few nanometers is common in colloidal and bacterial systems, dominating adhesion and aggregation and inducing deviations from classical DLVO theory based on a uniform distribution of surface charge. Topographical heterogeneity and roughness also strongly influence adhesion. In this work, a model is introduced to quantify the spatial fluctuations in the interaction of microparticles in a flowing suspension with a wall aligned parallel to the flow. The wall contains nanoscale chemical and topographical heterogeneities ("patches") that are randomly distributed and produce localized attraction and repulsion. These attractive and repulsive regions induce fluctuations in the trajectories of the flowing particles that are critical to particle capture by the wall. The statistical distribution of patches is combined with mean-field DLVO calculations between a particle and two homogeneous surfaces: one with the surface potential of the patches and one with the potential of the underlying wall. These surface potentials could be obtained in experiments from zeta potential measurements for the bare wall and for one saturated with patches. This simple model reproduces the mean DLVO interaction force or energy vs. particle-wall separation distance, its variance, and particle adhesion thresholds from direct simulations of particle trajectories over patchy surfaces. The predictions of the model are consistent with experimental findings of significant microparticle deposition onto patchy, net-repulsive surfaces whose apparent zeta potential has the same sign as that of the particles. Deposition is significantly enhanced if the patches protrude even slightly from the surface. The model predictions are also in agreement with the observed variation of the adhesion threshold with the shear rate in published studies of dynamic microparticle adhesion on patchy surfaces.

6.
Bull Math Biol ; 76(12): 2985-3015, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25410686

RESUMO

Under the approximation that blood behaves as a continuum, a numerical implementation is presented to analyze the linear stability of capillary blood flow through model tree and honeycomb networks that are based on the microvascular structures of biological tissues. The tree network is comprised of a cascade of diverging bifurcations, in which a parent vessel bifurcates into two descendent vessels, while the honeycomb network also contains converging bifurcations, in which two parent vessels merge into one descendent vessel. At diverging bifurcations, a cell partitioning law is required to account for the nonuniform distribution of red blood cells as a function of the flow rate of blood into each descendent vessel. A linearization of the governing equations produces a system of delay differential equations involving the discharge hematocrit entering each network vessel and leads to a nonlinear eigenvalue problem. All eigenvalues in a specified region of the complex plane are captured using a transformation based on contour integrals to construct a linear eigenvalue problem with identical eigenvalues, which are then determined using a standard QR algorithm. The predicted value of the dimensionless exponent in the cell partitioning law at the instability threshold corresponds to a supercritical Hopf bifurcation in numerical simulations of the equations governing unsteady blood flow. Excellent agreement is found between the predictions of the linear stability analysis and nonlinear simulations. The relaxation of the assumption of plug flow made in previous stability analyses typically has a small, quantitative effect on the stability results that depends on the specific network structure. This implementation of the stability analysis can be applied to large networks with arbitrary structure provided only that the connectivity among the network segments is known.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Capilares/anatomia & histologia , Capilares/fisiologia , Modelos Cardiovasculares , Algoritmos , Animais , Eritrócitos/fisiologia , Hemodinâmica/fisiologia , Humanos , Modelos Lineares , Conceitos Matemáticos , Dinâmica não Linear
7.
Clin Proteomics ; 11(1): 43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25593565

RESUMO

BACKGROUND: In our previous study that characterized different human CD4+ lymphocyte preparations, it was found that both commercially available cryopreserved peripheral blood mononuclear cells (PBMC) and a commercially available lyophilized PBMC (Cyto-Trol™) preparation fulfilled a set of criteria for serving as biological calibrators for quantitative flow cytometry. However, the biomarker CD4 protein expression level measured for T helper cells from Cyto-Trol was about 16% lower than those for cryopreserved PBMC and fresh whole blood using flow cytometry and mass cytometry. A primary reason was hypothesized to be due to steric interference in anti- CD4 antibody binding to the smaller sized lyophilized control cells. METHOD: Targeted multiple reaction monitoring (MRM) mass spectrometry (MS) is used to quantify the copy number of CD4 receptor protein per CD4+ lymphocyte. Scanning electron microscopy (SEM) is utilized to assist searching the underlying reasons for the observed difference in CD4 receptor copy number per cell determined by MRM MS and CD4 expression measured previously by flow cytometry. RESULTS: The copy number of CD4 receptor proteins on the surface of the CD4+ lymphocyte in cryopreserved PBMCs and in lyophilized control cells is determined to be (1.45 ± 0.09) × 10(5) and (0.85 ± 0.11) × 10(5), respectively, averaged over four signature peptides using MRM MS. In comparison with cryopreserved PBMCs, there are more variations in the CD4 copy number in lyophilized control cells determined based on each signature peptide. SEM images of CD4+ lymphocytes from lyophilized control cells are very different when compared to the CD4+ T cells from whole blood and cryopreserved PBMC. CONCLUSION: Because of the lyophilization process applied to Cyto-Trol control cells, a lower CD4 density value, defined as the copy number of CD4 receptors per CD4+ lymphocyte, averaged over three different production lots is most likely explained by the loss of the CD4 receptors on damaged and/or broken microvilli where CD4 receptors reside. Steric hindrance of antibody binding and the association of CD4 receptors with other biomolecules likely contribute significantly to the nearly 50% lower CD4 receptor density value for cryopreserved PBMC determined from flow cytometry compared to the value obtained from MRM MS.

8.
Anal Chem ; 85(3): 1276-9, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23286321

RESUMO

Mineral-assisted thermal decomposition of formamide (HCONH(2)) is a heavily studied model prebiotic reaction that has offered valuable insights into the plausible pathways leading to the chemical building blocks of primordial informational polymers. To date, most efforts have focused on the analysis of formamide reaction products released in solution, although several studies have examined the role of mineral catalysts in promoting this chemistry. We show here that the direct investigation of reactive mineral surfaces by desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) gives a new perspective on the important role of the mineral surface in the formation of reaction products. As a proof-of-principle example, we show that DESI-MSI allows interrogation of the molecular products produced on heterogeneous granite samples with minimal sample preparation. Purine and pyrimidine nucleobases and their derivatives are successfully detected by DESI-MSI, with a strong correlation of the spatial product distribution with the mineral microenvironment. To our knowledge, this study is the first application of DESI-MSI to the study of complex and porous mineral surfaces and their roles in chemical evolution. This DESI-MSI approach is generally applicable to a wide range of reactions or other processes involving minerals.


Assuntos
Minerais/química , Prebióticos , Espectrometria de Massas por Ionização por Electrospray/métodos , Imagem Óptica/métodos , Prebióticos/análise , Propriedades de Superfície
9.
Microsc Microanal ; 18(4): 892-904, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22846890

RESUMO

The accuracy and precision of X-ray intensity measurements with a silicon drift detector (SDD) are compared with the same measurements performed on a wavelength dispersive spectrometer (WDS) for a variety of elements in a variety of materials. In cases of major (>0.10 mass fraction) and minor (>0.01 mass fraction) elements, the SDD is demonstrated to perform as well or better than the WDS. This is demonstrated both for simple cases in which the spectral peaks do not interfere (SRM-481, SRM-482, and SRM-479a), and for more difficult cases in which the spectral peaks have significant interferences (the Ba L/Ti K lines in a series of Ba/Ti glasses and minerals). We demonstrate that even in the case of significant interference high count SDD spectra are capable of accurately measuring Ti in glasses with Ba:Ti mass fraction ratios from 2.7:1 to 23.8:1. The results suggest that for many measurements wavelength spectrometry can be replaced with an SDD with improved accuracy and precision.

10.
Microsc Microanal ; 17(5): 718-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21892991

RESUMO

Mineral borates, the primary industrial source of boron, are found in a large variety of compositions. One such source, kernite (Na2B4O6(OH)2·3H2O), offers an array of challenges for traditional electron-probe microanalysis (EPMA)-it is hygroscopic, an electrical insulator, composed entirely of light elements, and sensitive to both low pressures and the electron beam. However, the approximate stoichiometric composition of kernite can be analyzed with careful preparation, proper selection of reference materials, and attention to the details of quantification procedures, including correction for the time dependency of the sodium X-ray signal. Moreover, a reasonable estimation of the mineral's water content can also be made by comparing the measured oxygen to the calculated stoichiometric oxygen content. X-ray diffraction, variable-pressure electron imaging, and visual inspection elucidate the structural consequences of high vacuum treatment of kernite, while Auger electron spectroscopy and X-ray photoelectron spectroscopy confirm electron beam-driven migration of sodium and oxygen out of the near-surface region (sampling depth ≈ 2 nm). These surface effects are insufficiently large to significantly affect the EPMA results (sampling depth ≈ 400 nm at 5 keV).

11.
Microsc Microanal ; 17(3): 410-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21600071

RESUMO

X-ray elemental mapping and X-ray spectrum imaging are powerful microanalytical tools. However, their scope is often limited spatially by the raster area of a scanning electron microscope or microprobe. Limited sampling size becomes a significant issue when large area (>10 cm²), heterogeneous materials such as concrete samples or others must be examined. In such specimens, macro-scale structures, inclusions, and concentration gradients are often of interest, yet microbeam methods are insufficient or at least inefficient for analyzing them. Such requirements largely exclude the samples of interest presented in this article from electron probe microanalysis. Micro X-ray fluorescence-X-ray spectrum imaging (µXRF-XSI) provides a solution to the problem of macro-scale X-ray imaging through an X-ray excitation source, which can be used to analyze a variety of large specimens without many of the limitations found in electron-excitation sources. Using a mid-sized beam coupled with an X-ray excitation source has a number of advantages, such as the ability to work at atmospheric pressure and lower limits of detection owing to the absence of electron-induced bremsstrahlung. µXRF-XSI also acts as a complement, where applicable, to electron microbeam X-ray output, highlighting areas of interest for follow-up microanalysis at a finer length scale.

12.
Biomaterials ; 32(11): 2834-50, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21288568

RESUMO

Postnatal cardiomyocytes undergo terminal differentiation and a restricted number of human cardiomyocytes retain the ability to divide and regenerate in response to ischemic injury. However, whether these neo-cardiomyocytes are derived from endogenous population of resident cardiac stem cells or from the exogenous double assurance population of resident bone marrow-derived stem cells that populate the damaged myocardium is unresolved and under intense investigation. The vital challenge is to ameliorate and/or regenerate the damaged myocardium. This can be achieved by stimulating proliferation of native quiescent cardiomyocytes and/or cardiac stem cell, or by recruiting exogenous autologous or allogeneic cells such as fetal or embryonic cardiomyocyte progenitors or bone marrow-derived stromal stem cells. The prerequisites are that these neo-cardiomyocytes must have the ability to integrate well within the native myocardium and must exhibit functional synchronization. Adult bone marrow stromal cells (BMSCs) have been shown to differentiate into cardiomyocyte-like cells both in vitro and in vivo. As a result, BMSCs may potentially play an essential role in cardiac repair and regeneration, but this concept requires further validation. In this report, we have provided compelling evidence that functioning cardiac tissue can be generated by the interaction of multipotent BMSCs with embryonic cardiac myocytes (ECMs) in two-dimensional (2-D) co-cultures. The differentiating BMSCs were induced to undergo cardiomyogenic differentiation pathway and were able to express unequivocal electromechanical coupling and functional synchronization with ECMs. Our 2-D co-culture system provides a useful in vitro model to elucidate various molecular mechanisms underpinning the integration and orderly maturation and differentiation of BMSCs into neo-cardiomyocytes during myocardial repair and regeneration.


Assuntos
Células da Medula Óssea/citologia , Miócitos Cardíacos/citologia , Células Estromais/citologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/ultraestrutura , Cálcio/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Técnicas de Cocultura , Citometria de Fluxo , Vetores Genéticos/genética , Imunofenotipagem , Lentivirus/genética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Células Estromais/metabolismo , Células Estromais/ultraestrutura
13.
J Colloid Interface Sci ; 355(1): 243-51, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21208626

RESUMO

The dynamics and stability of a thin, viscous film of volatile liquid flowing under the influence of gravity over a non-uniformly heated substrate are investigated using lubrication theory. Attention is focused on the regime in which evaporation balances the flow due to gravity. The film terminates above the heater at an apparent contact line, with a microscopically thin precursor film adsorbed due to the disjoining pressure. The film develops a weak thermocapillary ridge due to the Marangoni stress at the upstream edge of the heated region. As for spreading films, a more significant ridge is formed near the apparent contact line. For weak Marangoni effects, the film evolves to a steady profile. For stronger Marangoni effects, the film evolves to a time-periodic state. Results of a linear stability analysis reveal that the steady film is unstable to transverse perturbations above a critical value of the Marangoni parameter, leading to finger formation at the contact line. The streamwise extent of the fingers is limited by evaporation. The time-periodic profiles are always unstable, leading to the formation of periodically-oscillating fingers. For rectangular heaters, the film profiles after instability onset are consistent with images from published experimental studies.

14.
J Colloid Interface Sci ; 353(1): 87-97, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20950822

RESUMO

The DLVO force and potential energy of interaction between microspheres and topographically and chemically heterogeneous surfaces in aqueous solution are computed using a modification of the surface element integration approach. The heterogeneous surface has an array of cylindrical pillars of varying height, diameter, and arrangement to model different nano-topographies. In agreement with previous studies, the nano-topography decreases the size of the potential energy barrier for unfavorable surfaces because the pillars limit the minimum separation distance. The influence of topography is significant even for pillars several nanometers high and is more pronounced if the surface potential of the pillar tops differs from that of the underlying surface. A new force- and energy-averaging model is introduced as a simple method to compute the mean interaction energy or force between the particle and a heterogeneous surface, which differs significantly from a mean-field approach based on the average or nominal surface potential. Small variations in topography are found to remove large energy barriers to colloidal deposition. These results help explain the increased attraction of patchy surfaces towards particles relative to expectations based on typical DLVO calculations, which is particularly significant for surfaces with adsorbed polyelectrolytes.


Assuntos
Coloides/química , Microesferas , Modelos Químicos , Tamanho da Partícula , Propriedades de Superfície , Termodinâmica
16.
Biomaterials ; 31(12): 3185-200, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20129663

RESUMO

Adult bone marrow stromal cells (BMSCs) are capable of differentiating into cardiomyocyte-like cells in vitro and contribute to myocardial regeneration in vivo. Consequently, BMSCs may potentially play a vital role in cardiac repair and regeneration. However, this concept has been limited by inadequate and inconsistent differentiation of BMSCs into cardiomyocytes along with poor survival and integration of neo-cardiomyocytes after implantation into ischemic myocardium. In order to overcome these barriers and to explore adult stem cell based myocardial regeneration, we have developed an in vitro model of three-dimensional (3-D) cardiac muscle using rat ventricular embryonic cardiomyocytes (ECMs) and BMSCs. When ECMs and BMSCs were seeded sequentially onto a 3-D tubular scaffold engineered from topographically aligned type I collagen-fibers and cultured in basal medium for 7, 14, 21, or 28 days, the maturation and co-differentiation into a cardiomyocyte lineage was observed. Phenotypic induction was characterized at morphological, immunological, biochemical and molecular levels. The observed expression of transcripts coding for cardiomyocyte phenotypic markers and the immunolocalization of cardiomyogenic lineage-associated proteins revealed typical expression patterns of neo-cardiomyogenesis. At the biochemical level differentiating cells exhibited appropriate metabolic activity and at the ultrastructural level myofibrillar and sarcomeric organization were indicative of an immature phenotype. Our 3-D co-culture system sustains the ECMs in vitro continuum of differentiation process and simultaneously induces the maturation and differentiation of BMSCs into cardiomyocyte-like cells. Thus, this novel 3-D co-culture system provides a useful in vitro model to investigate the functional role and interplay of developing ECMs and BMSCs during cardiomyogenic differentiation.


Assuntos
Coração/fisiologia , Células-Tronco Hematopoéticas/citologia , Imageamento Tridimensional , Regeneração , Animais , Sequência de Bases , Diferenciação Celular , Meios de Cultura , Primers do DNA , Citometria de Fluxo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Macromol Rapid Commun ; 31(1): 87-92, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21590842

RESUMO

Nanomaterials have emerged as valuable tools in biomedical imaging techniques. Here, the synthesis and characterization of a novel fluorinated nanoparticle with potential applications as an MRI contrast agent is reported. Particles were synthesized using a free radical polymerization technique. Secondary ion mass spectrometry analysis showed that the particles' surface contained fluorinated groups and nitrogen-containing groups. Solid-state NMR spectroscopy suggested the presence of two distinct fluorine resonances, which conforms to the structure of the fluorinated monomer. Ongoing studies aim to evaluate the performance of the nanoparticles as MRI contrast agents both in vitro and in vivo.

18.
J Colloid Interface Sci ; 337(2): 396-407, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19539949

RESUMO

This work explores the impact of nanoscale surface heterogeneity, small relative to the effective contact area between two surfaces, on pairwise colloid-scale interactions. Polycation-based positive patches, of order 10 nm in diameter, arranged randomly and lying flat on otherwise negative substrates, were used to create surfaces whose competing attractive and repulsive features determined the net interactions with opposing surfaces. Lab experiments and simulations of the adhesion of gently flowing dilute negative microparticles varied particle size (0.5-2 microm), ionic strength (kappa(-1)=1-12 nm) and the density of heterogeneity on the collectors. Limiting behaviors from heterogeneity-controlled at high ionic strength to mean-field-like interactions at low ionic strength are reported. When heterogeneities are important, pairwise interactions are more attractive than predicted by average surface properties (e.g. per DLVO), and an adhesion threshold, describing the minimum average density of cationic features needed for single particle capture (adhesion), depends strongly on Debye length. In the opposite limit, the threshold becomes insensitive to the Debye length, and the average surface character approximates the interactions. An analytical treatment, reduced to a simple scaling argument predicts a -1/2 power-law dependence of the adhesion threshold on Debye length and particle size. A slightly stronger particle size dependence in experiments and simulations results from hydrodynamic contributions along with slight scaling differences in electrostatic, van der Waals, and hydrodynamic forces. An analogy to biological ligands is made for the heterogeneity-dominated limit: it is discovered, for this particular system, that engagement of as few as 20-100 cationic patches dictates particle adhesion (with details depending on flow, particle size, and ionic strength), similar to reports for selectin-mediated rolling of white blood cells during the inflammatory pathway. Also discovered is a heterogeneity-dependent crossover in the effect of ionic strength on particle capture, where added salt promotes particle adhesion in most cases but stabilizes the particles when the heterogeneity becomes relatively dense.

19.
Environ Sci Technol ; 43(9): 3067-72, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19534115

RESUMO

Although the presence of polybrominated diphenyl ethers (PBDEs) in house dust has been linked to consumer products, the mechanism of transfer remains poorly understood. We conjecture that volatilized PBDEs will be associated with dust particles containing organic matter and will be homogeneously distributed in house dust. In contrast, PBDEs arising from weathering or abrasion of polymers should remain bound to particles of the original polymer matrix and will be heterogeneously distributed within the dust. We used scanning electron microscopy and othertools of environmental forensic microscopy to investigate PBDEs in dust, examining U.S. and U.K. dust samples with extremely high levels of BDE 209 (260-2600 microg/g), a nonvolatile compound at room temperature. We found that the bromine in these samples was concentrated in widely scattered, highly contaminated particles. In the house dust samples from Boston (U.S.), bromine was associated with a polymer/organic matrix. These results suggest that the BDE 209 was transferred to dust via physical processes such as abrasion or weathering. In conjunction with more traditional tools of environmental chemistry, such as gas chromatography/mass spectrometry (GC/MS), environmental forensic microscopy provides novel insights into the origins of BDE 209 in dust and their mechanisms of transfer from products.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Meio Ambiente , Ciências Forenses/instrumentação , Éteres Difenil Halogenados/análise , Automóveis , Poeira/análise , Massachusetts , Microscopia Eletrônica de Varredura , Espectrofotometria Infravermelho , Reino Unido
20.
Biomaterials ; 30(6): 1098-112, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19027154

RESUMO

Postnatal bone marrow contains various subpopulations of resident and circulating stem cells (HSCs, BMSCs/MSCs) and progenitor cells (MAPCs, EPCs) that are capable of differentiating into one or more of the cellular components of the vascular bed in vitro as well as contribute to postnatal neo-vascularization in vivo. When rat BMSCs were seeded onto a three-dimensional (3-D) tubular scaffold engineered from topographically aligned type I collagen fibers and cultured either in vasculogenic or non-vasculogenic media for 7, 14, 21 or 28 days, the maturation and co-differentiation into endothelial and/or smooth muscle cell lineages were observed. Phenotypic induction of these substrate-grown cells was assayed at transcript level by real-time PCR and at protein level by confocal microscopy. In the present study, the observed upregulation of transcripts coding for vascular phenotypic markers is reminiscent of an in vivo expression pattern. Immunolocalization of vasculogenic lineage-associated markers revealed typical expression patterns of vascular endothelial and smooth muscle cells. These endothelial cells exhibited high metabolism of acetylated low-density lipoprotein. In addition to the induced monolayers of endothelial cells, the presence of numerous microvascular capillary-like structures was observed throughout the construct. At the level of scanning electron microscopy, smooth-walled cylindrical tube-like structures with smooth muscle cells and/or pericytes attached to its surface were elucidated. Our 3-D culture system not only induces the maturation and differentiation of BMSCs into vascular cell lineages but also supports microvessel morphogenesis. Thus, this unique in vitro model provides an excellent platform to study the temporal and spatial regulation of postnatal de novo vasculogenesis, as well as attack the lingering limit in developing engineered tissues, that is perfusion.


Assuntos
Modelos Biológicos , Neovascularização Fisiológica , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Bovinos , Diferenciação Celular , Células Clonais , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Imunofenotipagem , Lipoproteínas LDL/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Neovascularização Fisiológica/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/citologia , Células Estromais/metabolismo , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...